4 research outputs found

    The Mask of Odd Points n

    Get PDF
    We present an explicit formula for the mask of odd points n-ary, for any odd n⩾3, interpolating subdivision schemes. This formula provides the mask of lower and higher arity schemes. The 3-point and 5-point a-ary schemes introduced by Lian, 2008, and (2m+1)-point a-ary schemes introduced by, Lian, 2009, are special cases of our explicit formula. Moreover, other well-known existing odd point n-ary schemes including the schemes introduced by Zheng et al., 2009, can easily be generated by our formula. In addition, error bounds between subdivision curves and control polygons of schemes are computed. It has been noticed that error bounds decrease when the complexity of the scheme decreases and vice versa. Also, as we increase arity of the schemes the error bounds decrease. Furthermore, we present brief comparison of total absolute curvature of subdivision schemes having different arity with different complexity. Convexity preservation property of scheme is also presented

    Shape-Preserving Properties of a Relaxed Four-Point Interpolating Subdivision Scheme

    No full text
    In this paper, we analyze shape-preserving behavior of a relaxed four-point binary interpolating subdivision scheme. These shape-preserving properties include positivity-preserving, monotonicity-preserving and convexity-preserving. We establish the conditions on the initial control points that allow the generation of shape-preserving limit curves by the four-point scheme. Some numerical examples are given to illustrate the graphical representation of shape-preserving properties of the relaxed scheme

    Analysis of Geometric Properties of Ternary Four-Point Rational Interpolating Subdivision Scheme

    No full text
    Shape preservation has been the heart of subdivision schemes (SSs) almost from its origin, and several analyses of SSs have been established. Shape preservation properties are commonly used in SSs and various ways have been discovered to connect smooth curves/surfaces generated by SSs to applied geometry. With an eye on connecting the link between SSs and applied geometry, this paper analyzes the geometric properties of a ternary four-point rational interpolating subdivision scheme. These geometric properties include monotonicity-preservation, convexity-preservation, and curvature of the limit curve. Necessary conditions are derived on parameter and initial control points to ensure monotonicity and convexity preservation of the limit curve of the scheme. Furthermore, we analyze the curvature of the limit curve of the scheme for various choices of the parameter. To support our findings, we also present some examples and their graphical representation
    corecore